Pages

2024/01/22

The Unsung Hero of Statistics

 William Gosset and the Revolution of Small Samples.

🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦


  • In the early 20th century, the world of statistics was dominated by one assumption: large numbers mattered(Nesselroade & Grimm, 2020). But for William Gosset, a chemist brewing ale at Guinness, small samples held untold insights. His revolutionary work on t-distribution and t-tests not only transformed statistics but opened the door to scientific advancements in countless fields.
πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…πŸ“…
Imagine trying to determine the best barley for brewing with only a handful of samples. Traditional methods, relying on the z distribution and massive datasets were useless. Gosset realized the need for a new approach, one that could unveil the secrets hidden within small collections of data.

πŸ‘€πŸ‘€πŸ‘€πŸ‘€πŸ‘€πŸ‘€πŸ‘€πŸ‘€πŸ‘€πŸ‘€πŸ‘€πŸ‘€πŸ‘€

His 1908 paper, "The Probable Error of a Mean," was a beacon in the statistical darkness. He recognized the limitations of the z curve and birthed the t distribution, a bell curve uniquely tuned to the whispers of small data. Armed with this new tool, Gosset crafted the t-test, a powerful technique for comparing means from two small samples. (Nesselroade & Grimm, 2020)

πŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺ

For the first time, scientists could draw meaningful conclusions from limited data. Imagine comparing the effectiveness of two fertilizers on corn yields or testing the shelf life of different brewing temperatures. Gosset's innovations made such discoveries possible, unlocking a new era of scientific inquiry.

πŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸ

Yet, Gosset's work wasn't met with immediate fanfare. He published under the pseudonym "Student" due to Guinness's restrictive publication policies. The irony was not lost on him; a man revolutionizing statistics had to hide his name. While some colleagues met his ideas with weighty apathy others recognized their brilliance. Ronald Fisher, a statistical giant himself, acknowledged Gosset's work as one of the most important publications in the history of inferential statistics.(Nesselroade & Grimm, 2020) 

πŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆπŸ³οΈβ€πŸŒˆ

Today, the t-test reigns supreme in countless scientific disciplines. From psychology and medicine to agriculture and business, it forms the backbone of countless research endeavors. Every time a scientist makes a claim based on small sample data, they pay homage to Gosset's legacy.


Gosset's story is more than just statistics; it's a testament to the power of curiosity and perseverance. He dared to challenge the status quo, venturing into the realm of the unknown and returning with tools that reshaped the scientific landscape. In an era obsessed with big data, his work reminds us that sometimes, the smallest whispers can hold the loudest truths.

πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯

References


 Nesselroade, P. K. & Grimm, L. G. (2020). Statistical applications for the behavioral and social sciences (2nd ed.). Soomo Learning. https://www.webtexts.com

The Three Musketeers of Math: Mean, Median, and Mode

 Mean, Median, and Mode




🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰🟰
Statistics is very intimidating to me and is kicking my ass this semester, so writing these blogs and relating them to something fun really helps me commit it to memory. So today I am introducing the Three Musketeers of Math: Mean, Median, and Mode. These swashbuckling statistics will help you understand any dataset like Zorro deciphers a secret message.

🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️

Meet the Crew

  • The Average Avenger: Mean is the sum of all the values of your data divided by the number of values. Think of it as sharing a pizza equally among your friends. Everyone gets a slice. 
  • The Middle Mastermind: Median is the value that splits your data in half when ordered from least to greatest. Imagine lining up your friends by height. The median friend is smack dab in the middle, not the shortest or the tallest.
  • The Most Popular Posse: Mode is the value that appears most often in your data. It's like the friend who always shows up to parties, the life of the statistical soiree.

When to Call on Each Musketeer

Each Musketeer has their strengths and weaknesses. Mean is great for normally distributed data - think bell curve, but gets thrown off by outliers- think your friend who brought three extra pizzas - skewing the average. The median shines when you have skewed data or outliers, but it doesn't consider all the values like the mean does. Mode is all about popularity, but it can be unreliable is there's no clear favorite value- think of friends who are all equally awesome in their own way.

 πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯


The Musketeers in action

Let's say you're tracking your video game scores: 10, 20, 30,30,40,50


  • The mean:( 10 +20+30+30+40+50) /6 = 30
  • The Median: Order the scores (10,20,30,30,40,50) the middle value is 30.
  • Mode: 30 appears twice, making it the most popular score.
 

The Mean, Median, and Mode are not rivals, they're complementary! Use them together to paint a richer picture of your data,

2024/01/21

The Incredible Experiment:

 A Superhero Guide to Independent and Dependent Variables


🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊🧊

Ever dreamed of being a scientist, wielding potions and peering through microscopes? Let us embark on a scientific adventure, unraveling the secrets of independent and dependent variables, your super tools for understanding the world around you!


Imagine a superhero lab



  • Professor Potential who is our wise mentor, mixing bubbling concoctions and spouting scientific wisdom.
  • Experiment X who is our trusty robot sidekick, ready for any test.
  • The question is will Professor Potential's new super-strength serum actually work on experiment X


The Key Players

  • Independent Variable - aka The Twister: This is the variable we change or control in our experiment. Just like Professor Potential changing the formula of the serum, the independent variable gets twisted and turned to see its effect.\
  • Dependent Variable - aka the Detector: This is the variable we measure or observe to see how it reacts to the changes in the independent variable. Experiment X will lift weights to see if his strength increases - that is the dependent variable, the detector of the serum's power.

The Big Showdown:


Professor Potential whips up different serums, changing the amount to a special ingredient which is the independent variable. Experiment X gulps them down and lifts weights with all his might. We measure how much he lifts which is the dependent variable - does it skyrocket with each new formula? 

The Reveal:


If Experiment X is suddenly bench pressing cars after the super-strength serum, it means the independent variable which is the serum formula has a clear effect on the dependent variable which is the weight lifted. If he is still struggling with tiny dumbbells, well, back to the lab!


  • The Independent variable controls the show, the variable we twist and turn.
  • The dependent variable watches the results, the variable that changes or doesn't in response.






Are Werewolves Real??

 Investigating the Moon and Relapse with Statistics

πŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺπŸ§ͺ

Ever heard that full moons bring out the crazies? Or maybe just a few extra patients in the emergency room? While the image of howling werewolves might be exaggerated, the question of a lunar influence on human behavior persists. Today, we'll put on our lab coats and use statistics to investigate the fascinating and often debated connection between moon phases and relapse rates.

🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️

The Suspect: Luna, the Earth's Satellite



Lunar lore spans centuries, with beliefs linking the moon to everything from tides to fertility. But for our investigation, the focus is on potential changes in human physiology or psychology based on the moon's phases. Some theories suggest gravitational or electromagnetic forces might play a role, while others point to altered sleep patterns or increased suggestibility under a full moon.

Gathering Evidence: The Power of Data

To test these theories, we need data. Lots of it. This means tracking relapse rates for specific conditions like addiction, and mental health episodes over time, alongside the corresponding lunar phases.

The Statistical Sleuthing:


Here's where the real fun begins! We can use various statistical tools to examine the data and see if there is any connection between phases and relapse. Let's explore some possibilities:
  • Chi-square test: This tests whether the observed distribution of relapses across lunar phases is different from what we would expect by chance.
  • Correlation coefficient: This measures the strength and direction of any relationship between lunar phases and relapse rates.
  • Regression analysis: This allows us to control for other factors that might influence relapses
     such as seasonality or weather, and see if the moon effect remains significant.
Even if some studies show a faint lunar link, it's crucial to remember correlation does not equal causation because there could be other, unknown factors at play.

So, are werewolves real? Based on current research, probably not. But the moon's influence on human behavior remains a captivating mystery. Statistical analysis helps us piece together the clues, but until the evidence speaks louder, we should maintain a healthy dose of skepticism and keep exploring.

Remember, science is a journey, not a destination. And in the realm of lunar mysteries, every full moon might just bring us a new chapter
in the story.



Featured Blog Post

Amphetamines: A History of Abuse and Addiction

 Amphetamines have a long and complex history, dating back thousands of years (Rosenthal, 2022). Originally they were used for medicinal pur...

Some Popular Posts from my blog