Data

Levels




πŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸπŸͺŸ
  • Four measurement scales - ways to categorize different types of variables and choose the right statistical test, visualization technique, and guide data analysis.
    • nominal - names/ labels
    • ordinal - order is important
    • interval - space between/ tell us about order and the value between each item
    • ratio - ultimate order, interval values, plus the ability to calculate ratios since a true zero can be defined

Qualitative Data πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯πŸŸ₯

  • Nominal Variables - values are not ordered like nationality, gender, etc.
    • Nominal scales are used for labeling variables without any quantitative value.
    • They could simply be called labels
    • nominal sounds like names and these scales are like names or labels.
    • At this level, you can not do any quantitative mathematical operations like addition or division.
    • You can do basic counts using pandas' value _counts method
    • graphs like bar charts, and pie charts.
  • Ordinal Variables - 
    • the order of the values is important and significant but the differences between each one are not known.
    • typically measures of non-numeric concepts like satisfaction, happiness, discomfort, etc.
    • Ordinal sounds like order and it is the order that matters and that is all you really get.
    • We can do basic counts as we do with nominal data and have comparisons and orderings.
    • graphs like bar and pie charts but now we can calculate medians and percentiles
    • with medians and percentiles stem and leaf plots as well as box plots are possible.

Quantitative Data🟦🟦🟦🟦🟦🟦🟦🟦🟦


  •  Two types of Quantitative variables
    • Discrete Variables - their values are countable and can only assume certain values with no intermediate values like the number of heads in 10 coin tosses
    • Continuous Variables - can assume any numerical value over a certain interval or intervals example the height of a person.
Interval

  • numeric scales where we know both the order and the exact differences between the values.
  • Celsius temperature is an example because the difference between each value is the same.
  • The histogram - visualizes buckets of quantities and shows the frequencies of these buckets and we can use scatter plots - where we can graph two columns of data on our axes and visualize data points as literal points on the graph.
  • Don't have a true zero - there is no such thing as no temperature. Negative numbers also have a meaning.
  • We can add and subtract but can not multiply or divide.

Ratio

  • tell us about order, exact value between units, and have an absolute zero.
  • height and weight are examples of this.
  • They can be added, subtracted, multiplied, and divided.
  • Central tendency can be measured by mode, median, or mean
  • Measures of dispersion such as standard deviation and coefficient variation can be calculated from ratio scales.


 πŸŒ‘️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️🌑️

 References

 https://medium.com/@rndayala/data-levels-of-measurement-4af33d9ab51a

No comments:

Post a Comment

Featured Blog Post

Amphetamines: A History of Abuse and Addiction

 Amphetamines have a long and complex history, dating back thousands of years (Rosenthal, 2022). Originally they were used for medicinal pur...

Popular Posts